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NASA STI Program ... in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part
in helping NASA maintain this important
role.

The NASA STI Program operates under the
auspices of the Agency Chief Information
Officer. It collects, organizes, provides for
archiving, and disseminates NASA's STI.
The NASA STI Program provides access to
the NASA Aeronautics and Space Database
and its public: interface, the NASA Technical
Report Server, thus providing one of the
largest collection of aeronautical and space
science STI in the world. Results are
published in both non-NASA channels and
by NASA in the NASA STI Report Series,
which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to
be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA's mission.

Specialized services also include creating
custom thesauri, building customized
databases, and organizing and publishing
research results.

For more information about the NASA STI
Program, see the following:

• Access the NASA STI prograin home page
at http://www.sti.na,sa.gov

• E-mail your question via the Internet to
lielp@sti.nasa.gov

• Fax your question to the NASA STI
Help Desk at 443-757-5803

• Phone the NASA STI Help Desk at
443-757-5802

• Write to:
NASA STI Help Desk
NASA Center for AeroSpace
Information
7115 Standard Drive
Hanover, NID 21076-1320
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Abstract
This users manual provides in-depth information concerning installation and
execution of LAURA, version 5. LAURA is a structured, multi-block, compu-
tational aerothermodynamic simulation code. Version 5 represents a major
refactoring of the original Fortran 77 LAURA code toward a modular struc-
ture afforded by Fortran 95. The refactoring improved usability and maintan-
ability by eliminating the requirement for problem-dependent re-compilations,
providing more intuitive distribution of functionality, and simplifying inter-
faces required for multiphysics coupling. As a result, LAURA now shares
gas-physics modules, MPI modules, and other low-level modules with the
FUN31) unstructured-grid code. In addition to internal refactoring, several
new features and capabilities have been added, e.g., a GNU-standard instal-
lation process, parallel load balancing, automatic trajectory point sequencing,
free-energy minimization, and coupled ablation and flowfield radiation.
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I Introduction
The users manual consists of seven sections. Section 2 gives an overview of
new features, capabilities, and bug fixes. System requirements and installation
are covered in Section 3, followed by code execution instructions in Section 4.
Section 5 presents input files, their formats, and detailed information on their
contents while Section 6 covers output files. Ancillary utilities are explained in
Section 7, and the last section, Section 8, presents illustrative example cases.

2 New in This Version
LAURA v5.1 offers several new enhancements and bug fixes since the previous
released version, v5.0:

• Major Enhancements

— Surface recession

— Multiple blocks per processor

— Automatic load balancing

• Minor Enhancements

— Updated kinetic, transport, and thermodynamic data

— MPI efficiency improvements

— Consistent laura_blayer.dat across block interfaces

— GNU-standard installation make check

— Simplified reaction diagnostic messages

• Bug Fixes

— Occasional NaNs in laura_blayer.dat file

— Memory leak in I/O section of the code

— Error in one of 10 possible ranges in equilibrium-air formulation

— Incorrect shear stress signs in output files

— Deficiency in super-catalytic and fully-catalytic options

— Error in algorithm for cases with inactive blocks

— Evaluating boundary layer properties for inviscid flow

— Error in Stefan-Maxwell diffusion model

— Linf location initialization

— Multiblock align shock
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3 Installation
LAURA requires a Fortran 95 compiler, and if parallel processing is desired,
a Message Passing Interface (MPI) implementation.' Some optional utilities
require Ruby.' The installation and subsequent execution of LAURA assumes a
Unix-like operating system or compatibility layer.' After the code is unpacked
from the LAURA release tarball,

% tar zxf Laura-5.1-Z.tar.gz (unpack gzipped tarball)
% cd laura-5.1-Z

where Z is a revision track number. LAURA is installed via GNU build sys-
tem, 4 which entails executing a sequence of four commands: conf igure, make.,
make check 5 and make install.(

3.1 Sequential installation
To configure, compile, test, and install a sequential version of LAURA for use
with a single processor, first make a subdirectory of laura-5.1-Z to store the
configuration. For example,

% mkdir g95-seq
% cd g95-seq

if using the g95 Fortran compiler;' and then proceed with the typical GNU
build sequence,

% ../configure FC=g95 --prefix=$PWD
% make
% make check
% make install

Note that conf igure's --prefix option specifies the root directory for in-
stalling build artifacts—the default is /usr/local. In this example, it is set
to the current working directory, g95-seq so executables will be installed
in g95-seq/bin and data files will be copied to g95-seq/share/laura and
g95-seq/share/physics - modules directories.

To use LAURA and associated utilities, set your search path to include
$PWD/bin, e.g.,

setenv PATH ${PWD}/bin:$PATH (for csh)
export PATH= VPWD}/bin:$PATH (for sh)

'For example, OpenMPI or MPICH.
2 See ruby-lang.org.
'For non-Unix-like systems, compatibility layers are available from mingw.org  (minimal)

and cygwin.coin (maximal).
'See gnu.org/software/autoconf/.
S The make check command is optional. It will attempt to run small test cases.
6The make install command may require administrator privileges depending on your

installation location.
7g95.org
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3.2 MPI Installation
An MPI-enabled installation (to allow multiple processors) is similar to the
sequential installation except the configuration command has the --with-mpi
option instead of the FC Fortran compiler variable, e.g.,

% ../configure --prefix=$PWD \

--with-mpi=/usr/local/pkgs/ompi_1.2.8-intel_11.0-028

Another difference is that an MPI-enable configuration will produce an exe-
cutable named laura-mpi instead of laura.

In either case, conf ig.log contains a record of the configuration com-
mand used, and configure's --help option details all available configuration
options.

4 Execution
The following steps outline a typical simulation cycle.8

Step 1. To start LAURA, a PLOT3D structured grid file is needed see
Section 5.2 on page 10 for more info. You may externally generate a
grid using grid generation packages, such as Gridgen", GridPro, and
so forth, or use LAURA's interactive self -start utility to generate a
single-block structured grid for simple families of 2D, axisymmetric
and 3D blunt bodies—see Section 7.7 on page 49.

Step 1a. Using self-start. To use self-start to generate a single-
block grid, simply execute this interactive utility, e.g.,

% self-start

and answer all the questions. After a successful execution,
this utility will have generated the following files:

assign-tasks laura-bound-data

laura.g	 laura-namelist_data self_start.log

Examine the grid, laura.g, and proceed to Step 2.

Step 1b. External Grid Generation. Generate a single- or multi-
block structured grid with the following rules:

i. Right-handed grid coordinates
ii. Longitudinal axis of the body aligned with the x-axis,

oriented nose-to-tail

'See Section 8 on page 50 for complete worked examples and Appendix A on page 62 for
how to restart cases run with versions of LAURA prior to version 5.
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and write the grid coordinates into a PLOT31) tile, laura.g.
Run the interactive bounds utility (see Section 7.1 on page 47)
and answer all the questions regarding the grid block topol-
ogy:

% bounds

This utility will automatically generate laura-bound-data,
the connectivity file.

Step 2. If you did not use self start, create assign tasks (see Section 7.6
on page 49 for more info) and a laura-namelist_data file or copy
the sample file from the [install prefix] /share/laura directory,
where [install_pref ix] is the installation prefix specified when
LAURA was installed. Edit this file for your case—see Section 5.4
on page 13 for more detail.

Step 3. Create a tdata file (see Section 5.5 on page 30) to define the gas
model condition for your specific simulation.9

Step 4. Run LAURA,

% laura

or

% mpirun -np [#] laura_mpi

where # is the number of available processors. By the end of this
step, the following files will have been generated:

conv.out

laura_new.g
	

laura_new.rst

laura_surface.q
	

laura_flow.q

laura_surface.mcr
	

laura_flow.mcr

Examine these files before proceeding to the next step.10

Step 5. Change irest flag in the laura-namelist_data (see Section 5.4 on
page 13) from 0 to 1, and copy the new generated grid and solution
files to laura.g and laura.rst tiles; i.e.,

9 A sample tdata is available in the [install prefix] /share/physics-modules instal-
lation directory. The other datafiles that reside in this directory, e.g., kinetics data,
species_thermo_data, species_transp_data, and species_transp_data_0, may also be
copied and tailored to suit a different thermodynamic model, curve-fit data, or thermo-
chemical reactions are needed. See Section 5.5 on page 30 for more detail.

"See Section 6 on page 42 for complete description of laura output files.
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% cp laura_new.g laura.g

% cp laura_new.rst laura.rst

Step 6. Repeat the previous two steps until iterative convergence.

5 Input Files
Nominally, LAURA requires five input files as shown in the upper section of
Table 1. Depending on the simulation requirements, however, other files may
also be necessary and are shown in the second section of Table 1. All files are
plain ASCII text unless otherwise noted.

Table 1: LAURA input files.

Filename	 Content

assign tasks
laura.g*
laura_bound_data
l aura-name l i st_dat a
tdata

hara. in
kinetic data
laura.rst'
laura.rrn
laura_traj e ct ory_dat a
laura_vis_data
species_thermo_data
species_transp_data
species_transp_data0
surf ace-property-data

Sweep and relaxation directions
PLOT31) grid
Grid block face boundary conditions
Simulation configuration
Gas model

Radiation mechanisms
Specie reactants and products
Flowfield solution for restart
Transition location and length
Trajectory points
Viscous term treatment
Specie thermodynamics
Collision cross-sections
High-order collision cross-sections
Thermochemical surface properties

* Fortran unformatted binary, 3-D whole, multiblock PLOT3D.
t Fortran unformatted binary.

The following subsections describe all input files in detail, beginning with
the nominally required files and then proceeding alphabetically as shown in
the table.

5.1 assign tasks

This file defines sweep and relaxation directions for each grid block. Each line,
corresponding to each grid block, has six integers that are separated by at
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least one space. These integers correspond to nbk, mbk, mbr, lstrt, lstop,
and mapcpu where

nbk

Block number.

mbk

Sweep direction. The assigned value can be either 1, 2, or 3, correspond-
ing to i-, j-, or k-direction, respectively.

mbr

The line relaxation direction. Note: must be different than the sweep
direction.

Options are:

0: Point-implicit, i.e., no line-relaxation

1: Line-implicit along i coordinate

2: Line-implicit along j coordinate

3: Line-implicit along k coordinate

lstrt

The starting grid index in the sweep direction. Typically 1 .

lstop

The ending grid index in the sweep direction. Typically 0, which is
shorthand for the maximum index.
mapcpu

CPU number for block nbk. Must be greater than zero. To run with a
single processor, set this value to 1 for all grid blocks.

When starting a new simulation where the k-coordinate runs from the
vehicle surface to the freestream boundary, sweeping in the k-coordinate and
solving point-implicitly is recommended, i.e. mbk = 3 and mbr = 0. After
the shock has stabilized, switch to streamwise sweeps and solve line-implicitly
along the k-coordinate, i.e. mbk = 1 and mbr = 3.

5.1.1 Example 1: Multiple Blocks per CPU or Vice-versa

Suppose the grid has 2 blocks, but the number of available processors is not
the same as the number of grid blocks. The user does not need to change any
of the input files and can simply specify the number of processors available,
e.g.,
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% mpirun -np [# 1 laura-mpi

where # is the number of available processors. LAURA automatically assigns
processors to blocks such that each processor receives approximately same
number of grid cells.

5.1.2 Example 2: Deactivating Grid Blocks

Suppose the grid has 50 blocks, but only blocks 20-25 need to be updated. In
this case, assign tasks would contain only the active blocks, e.g.,

20 3 0 1 0	 1

21 3 0 1 0	 2

22 3 0 1 0	 3

23 3 0 1 0	 4

24 3 0 1 0	 5

25 3 0 1 0	 6

nbk mbk mbr lstrt lstop mapcpu

5.2 laura.g

This file is a multi-block, 3D-whole PLOT31) file in Fortran unformatted binary
format with double-precision reals. For convenience, here is a sample of the
Fortran 95 code that LAURA uses to read this file:

open ( 25, file = 'laura.g', form= 'unformatted' )

read(25) nblocks

...allocate i,j,kblk(nb) and grid memory...

read(25) (iblk(nb),jblk(nb),kblk(nb),nb=l,nblocks)

do nb = 1, nblocks

ixl = iblk(nb) ; jxl = jblk(nb) ; kxl = kblk(nb)

...allocate grid(nb)%x,y,z memory...

read(25) (((grid(nb)%x(i,j,k),i =l,ixl),j = l,jxl),k=l,kxl), &

(((grid(nb)%y(i,j,k),i=l,ixl),j=l,jxl),k=l,kxl), &

(((grid(nb)%z(i,j,k),i=l,ixl),j=l,jxl),k=l,kxl)

end do

A file of this format, but named laura-new.g," is generated by Laura at the
end of a successfill run. This file is required and must have a right-handed
coordinate system. Figure 1 shows the default laura coordinate orientation.
Laura does not require a specific coordinate or grid orientation but the angle-

	

of-attack definition is predefined	 see Section 5.4.3 on page 18 for more info.

"When running a trajectory sequence, the file will be named Laura-####. g where ####
is the trajectory point index.
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Figure 1: Default LAURA coordinate system orientation.

5.3 laura_bound_data
Grid block face boundary types are defined in laura_bound_data where each
line corresponds to a grid block and contains six integers, one for each of the
six faces: imin> imax> imin, . maxi kmin> and kmax• Each integer specifies either
a physical boundary condition or block-to-block interfaces. An illustrative
example is analyzed toward the end of this section.

This file is required and is generated automatically for grids created by
LAURA's self start utility—see Section 7.7 on page 49. This file can also be
created by using LAUR.A's interactive utility, bounds, by answering questions
for each block.

Valid face types are as follows:

-9,...,0:  Solid surface boundary. Up to ten different solid surface boundaries
may be specified. Thermocheinical properties of solid surfaces that are
different than type 0, which are specified in laura-namelist_data, are
defined in surf ace-property-data file—see Section 5.15 on page 41.

l: Outflow boundary (extrapolation).

2: Symmetry boundary across y = constant.

3: Farfield/Freestream boundary.

4: Symmetry boundary across x = constant or z = constant.

5: Reflection boundary across j = 1 symmetry (valid for axi-symmetric
and/or 2D grids) .
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6: Venting boundary. (See Section 5.4.14 on page 30 for more details.)

7: Reflection boundary across i face singularity with periodic j boundary.

>1000000: This seven digit boundary number defines block-to-block face connectiv-
ity. The first digit is always 1. The next three digits identifies the block
number that is shared with the current block. The 5 1 digit defines which
i, j, or k face of the neighboring block is shared where 1 corresponds to
i,,,,27Z7 2 corresponds to and so forth. The last two digits identify the
relation of the remaining two indices: The 6th digit can be either 1, 2,
3, or 4 where values of 1 or 3 mean the first index of the host face is in
the same direction as the first or second index of the neighboring face,
respectively, and values of 2 or 4 mean the adjoining indices are in the
opposite direction. The last digit can be either a 1 or 2 and indicates
whether the second indices of the host and neighboring faces are in the
same direction or they are in the opposite direction, respectively.

For example, consider a block with the following laura_bound_data bound-
ary condition numbers:

1006421 1002111	 2	 1005121	 0	 3

The first integer, 1006421, shows that i,,,,i,, of this block is shared with j„tax

(fifth digit) of block 6 (the first three digits after 1). The first and second
indices of the host face are j and k, respectively. Because the j index is
connected to i, the first and second indices of the neighboring face are i and
k, respectively, The 2 in the 6 th digit shows that the j index of the host face
is in opposite direction of the i index of the neighboring face. The last digit,
1, indicates that k indices of the host and and neighboring faces are along the
same direction. This configuration is illustrated in Figure 2.

Figure 2: Illustration used for block connectivity example.

The second and fourth boundary-type integers can be explained similarly.
The third boundary-type integer (corresponding to the j,,., i,^ face) specifies a
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y-constant symmetry plane; the fifth boundary-type integer (corresponding to
the kmi„ face) specifies is a solid-wall boundary condition; and the last digit
(corresponding to the k,,,, face) specifies a freestream boundary.

5.4 l aura -namelist _dat a

Simulation configuration is specified through laura-namelist data and is re-
quired. This file is read as a Fortran 05 namelist and has the form,

&laura namelist

velocity-ref = 5000.0

density-ref = 0.023

tref	 = 250.0

alpha	 = 25.0

variable	 = value

Free stream velocity, m/s

reference density, kg/s

Free stream temperature, K

Angle-of-attack in xz plane, degrees

Optional comment ]

where variable and their possible values are described in the following sec-
tions, which are grouped according to fa,rfield/freestream and aerodynamic
coefficient reference quantities; thermochemical nonequilibrium flags; molec-
ular transport flags; turbulent transport models flags; numerical parameters;
grid adaptation, alignment, and doubling parameters; radiation and ablation
flags; grid-file description; venting boundary condition flags; and solid sur-
face boundary condition flags. Note that for all but the parameters shown
in the above example, reasonable defaults have been chosen and only those
parameters that differ from the defaults need to be specified.

Detailed description of parameters and/or flags with their units and default
values is presented under each of the above categories. The order of these
parameters is arbitrary but is given here alphabetically for better readability.

5.4.1 Ablation Flags

ablation option

An integer that specifies whether the pyrolysis ablation rate and wall
temperature are computed in addition to the char ablation rate. This
option only effects cases with bprime_f lag equal to 0 or 1.

Options are:

0: The pyrolysis ablation rate and wall temperature are computed, in
addition to the char ablation rate, assuming steady-state ablation.

1: The pyrolysis ablation rate and wall temperature are held constant
(they are set to the values present in ablation_from_laura.m) while
the char ablation rate is computed.
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ablation-verbose

A logical flag to print out developer focused info on convergence of ab-
lation. Default: .false.
blowing-model-0

Character indicator for ablation model specification. Default: `none'

Options are:

'FIAT'
This `FIAT' 12 option computes the blowing rate and surface tem-
perature as a function of heating rate, pressure, and ablator ele-
mental mass fractions. The user must specify the elemental mass
fractions for char and pyrolysis gas or default of 100% carbon will
be employed.

` none'
No ablation-Howfield coupling.

`specified'
This option specifies a blowing or suction rate as a function of pres-
sure (see mdot_pressure_0). The user must specify the elemental
mass fractions for pyrolysis gas or default of 100% carbon will be
employed. Any specification for elemental mass fraction of char is
ignored in this option.

`equil_char_quasi_steady'
This option solves the equilibrium surface ablation problem. The
energy balance, elemental mass balance, and char equilibrium con-
straint are solved to obtain the char ablation rate, wall temperature,
and elemental composition at the surface. Along with the pressure
from the normal momentum equation, these values define the equi-
librium species composition at the wall. The user must specify the
surface temperature type to be surface energy balance see
Section 5.4.10 on page 25 for more info.
Presently, this model does not include an in-depth material response
computation, which would provide the pyrolysis ablation rate and
conductive heat flux into the solid material. These two values are
required for solving the previously mentioned surface equations. To
approximate these values, the steady-state ablation assumption is
made, which specifies that the pyrolysis ablation rate is propor-
tional to the char ablation rate and the in-depth conduction is pro-
portional to the enthalpy at the surface.

12FIAT is a stand alone software and is needed if blowing_Mode1_0=` FIAT' I . Request for
access to FIAT can be made to NASA Ames Research Center.
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In the present framework of steady-state ablation, the ablation
material is completely defined by CHONSi_frac_pyrolysis_0 (thus
CHONSi_frac_char_O is ignored in this option). These are defined
below. Note that the computed ablation rate is the sum of the py-
rolysis and char components. (See Sections 8.3 on page 57 and 8.4
on page 58 for recommended procedure for an unspecified ablation
computation.)

` quasi steady'
This option specifies a quasi-steady ablation rate as a function of
local pressure, heating rate, and temperature. The sublimation
temperature and heat of ablation are specified by the user for a
given ablator as a function of pressure. (See t_sublimation_0 and
h_ablation_0.) If the surface temperature is less than the sub-
limation temperature a zero blowing rate is defined. Otherwise
the blowing rate is given by m. = q/OHo,bl with appropriate non-
dimensionalization employed before use. The user must specify the
elemental mass fractions for pyrolysis gas or default of 100% car-
bon will be employed. Any specification for elemental mass frac-
tion of char is ignored in this option. The user must specify the
surface temperature type to be surface energy balance see
Section 5.4.10 on page 25 for more info.

bpr ime_f laiz

An integer defining if the b-prime approach is applied. Applicable only
for blowing-model -0 = ` equil_char_quasi_steady' . See Section 5.4.1
on the preceding page for more details of its application. Default: 0

Options are:

0: Do not use bprime approach, and instead use a rigorous diffusion
model. This option is consistent with the "Fully-Coupled" approach
defined in Ref. [1].

1: Use b-prime approach. This option is consistent with the "Partially-
Coupled" approach defined in Ref. [1].

2: Hold the ablation rate and wall temperature constant from the
restart file, while applying the rigorous diffusion model (thus, the
surface energy balance and char equilibrium constraint are not sat-
isfied). This option is sometimes useful tivhen transitioning from
a bprime_flag = 1 computation to a bprime_flag = 0 computa-
tion.

char_density_O

Density of the char, kg/m3 . Default: 256.29536
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CHONSi_frac_char_O

This rank 1 vector of extent 5 sets elemental mass fraction of C, H, O,
N, and Si species from char. Elemental mass fractions must be in this
order and the sum of elemental mass fractions must equal 1.0 . Default:
CHONSi_frac_char_O = 1.0, 0.0, 0.0, 0.0, 0.0

CHONSi_frac_pyrolysis_0

This rank 1 vector of extent 5 sets the elemental mass fractions of pyrol-
ysis gas species, which are C, H, O, N, and Si. Elemental mass fractions
must be in this order and the sum of elemental mass fractions must be 1.
Default is Graphite:
CHONSi_frac_pyrolysis_0 = 1.0, 0.0, 0.0, 0.0, 0.0

compute-mdot_initial

An integer defining if the ablation rates are computed before the first
flowfield iteration.

Options are:

0: Applies the ablation rates and wall temperatures present in the
ablation_from_lauram file.

1: Computes the ablation rates and wall temperatures before the first
flowfield iteration.

f req_wall

For bprime_flag = 1, it is all defining frequency of update to
ablation wall boundary conditions. For bprime_f lag = 0, it is an inte-
ger defining frequency of update to the surface energy balance solution,
which defines the wall temperature, while nexch defines the frequency of
update to the remaining surface equations see Section 5.4.8 on page 23
for more info oil 	 Default: 50
h_ablation_0

A rank 1 vector of extent 3 used to compute the heat of ablation in
MJ/kg for quasi steady blowing option as

h_ablation_0(1) + (h_ablation_0(2))logp,,

	

+ (h_ablation_0(3))(logpw)2 	 (1)

where p,„ is the local pressure,in atmospheres. Example OHabt = 28.0 —
1.375 log p,, + 27.2(log p,, ) 2 . Default: 0.0

mdot_pressure_0

A rank 1 vector of extent 2 is used to set the blowing or suction distri-
bution defined as

	

mdot_pressure_0(1) + (mdot_pressure_0(2)) p 2	 (2)
pooV2
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where p is the local pressure, p,, is the reference density, and V,,,, is the
reference velocity. Positive value produces blowing distribution, while
negative value produces suction distribution. Default: 0.0

t_sublimation_0

A rank 1 vector of extent 3 used to compute the sublimation temperature
in degrees Kelvin for quasi steady blowing option as

t_sublimation_0(1) + (t_sub1imation_0(2))1ogp 7,,	 (3)
+ (t_sub1imation_0(3))(logp,„)2

where p,,, is the local pressure in atmospheres. Example T,,,, b = 3797.0 +
342.0logp,,,, + 30.0(logp u,) 2 . Default: 0.0

uncoupled-ablation-flag

An integer defining if an uncoupled ablation analysis is applied. The
uncoupled ablation option is included to provide a baseline solution for
the coupled ablation analysis. Default: 0

Options are:

0: Do not apply an uncoupled ablation analysis. It means that the
coupled ablation analysis discussed in Section 8.3 on page 57 is
applied.

1: Apply an uncoupled ablation analysis to a converged non-ablating
flowfield. The procedure for applying the uncoupled ablation anal-
ysis is discussed in Section 8.4 on page 58.

virgin_density_O

Density of virgin material, kg/m 3 . Default: 544.627742

5.4.2 Aerodynamic Coefficient Reference Quantities

bref

Yaw moment coefficient reference length, grid-units. Default: 1.0

cref

Pitching moment coefficient reference length, grid-units. Default: 1.0

sref

Reference area for aerodynamic coefficients, grid-units. Default: 1.0

xmc

x-coordinate of moment center, grid-units. Default: 0.0
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ymc

y-coordinate of moment center, grid-units. Default: 0.0

zmc

z-coordinate of moment center, grid-units. Default: 0.0

5.4.3 Farfield/ Freest ream Reference Quantities

aloha

Angle-of-attack in xz plane, degrees, such that

u = cos(a)cos(yaw); v = —sin(yaw); w = sin(oz)cos(yaw)	 (4)

where u, v, and w are velocities in x-, y-, and z-coordinate, respectively.
Default: 0.0

d pn-,ity rPf

Free stream density, kg/m 3 . Default: 0.001

rpm

Spin rate, RPM. This is applicable only to axisymmetric cases.
Default: 0.0

tref

Free stream temperature, K. Default: 200.0

velocity-ref

Free stream velocity, m/s. Default: 5000.0

yaw

Sideslip angle in xy plane, degrees. Default: 0.0

traj ectory_data_point

Pickup simulation from this line in the file laura_trajectory_data.

Default: 0 if laura_traj ectory_data is not present.

Default: 1 if laura_traj ectory_data is present.

Note that the reference quantities are defined consistently across the
trajectory using the values supplied in namelist above. The reference
quantities are NOT reset according to the time varying free stream con-
ditions. Consequently, dimensionless values of density and velocity in
free stream will not generally equal 1. Dimensionless values of total en-
thalpy in free stream will not equal 0.5 which may impact post-processing
tools that are key on a specific number for total enthalpy to detect the
boundary-laver edge.
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The algorithm is most efficient if the restart solution is converged (or
nearly converged so that line-implicit relaxation maybe applied) at free
stream conditions equal to the reference quantities in laura-name 1ist_data.
If one wishes to pickup a computation for traj ectory_data_point > 1
then it is best to start at the converged restart file for the previous
trajectory point. Restart files and post processing files for each tra-
jectory point have the trajectory point number included as part of the
root name. Thus if one wants to pickup at trajectory point 12 one
should copy laura_0011.rst to laura.rst and (if grid is being updated)
laura_0011.g to laura.g. This advice is offered because restart solutions
are converted according to the ratio of density and velocity between ad-
jacent trajectory points to bring interior initial conditions closer to the
new inflow boundary conditions.

5.4.4 Grid Adaptation, Alignment, and Doubling Parameters

beta_jrd

This parameter controls grid points normal to the body (k-grid points)
are controlled by the following grid stretching function:

kmax —ki
/3-1 kmax — 1

*	 —^'3+1
	

(r)k =1	 ^2	 kmax—ki
'3-1 kmax + 1
'3+1

where ki are new grid points. The beta parameter defines the 0
coefficient in equation 5. No stretching ^vvill be performed if 0 < 1.
Recommended value is 1.15, if used. Default: 0.0

ep0_grd

Grid clustering around the shock is designed using the following function:

k** i = Eoki 2 (1 — ki)(k% + fsh) + ki	 (6)

where ki refers to normalized value and k2 is defined by equation 5.
ep0_grd assigns the co coefficient in equation 6. Maximum recommended
value is 25/4, if used. Default: 0.0

lrmnY final

The target number of grid cells in the k-direction. Triggered by the
global L2 error norm set by kmax -error, cells along the k direction are
increased by a factor of kmax-factor until reaching kmax-final. Any
value less than the number of k grid cells in laura.g file will be ignored,
i.e., no coarsening. This option requires all blocks to be active. Default:
0.0
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kmax_error

When the global L2 error norm reaches this value, the number of grid
cells in the k direction increases by a factor of kmax_factor until the
maximum allowable grid cells, kmax_f final, is reached. This option re-
quires all blocks to be active. Default: 0.01

fctrjmp

This parameter is used to detect bow shocks. Bow shock is first detected
when the sensing parameter defined by jumpf lag exceeds by this value,
while searching from inflow boundary. Default: 1.05

frac_line_implicit

This positive parameter, which must be less than or equal 1, sets a
fraction of the line-implicit direction that is assigned in assign tasks
(see Section 5.1 on page 8). This parameter, which supersedes the given
assignments in assign tasks, will be applied to all the active blocks.
This parameter is recommended where there might be an instability
issue such as across strong shocks. Default: 0.7

fsh

Fraction of arc length distance between body and inflow boundary where
bow shock is captured. Default: 0.8

fstr

This parameter approximately defines fraction of k-cells in boundary
layer region. Default: 0.75

j umpf lag

An integer flag to select the sensing parameter to be used in detecting
position of captured shock for grid adaption. Default: 2

Options are:

0: Redistributes grid points in k-direction for the target cell Reynolds
number defined by re-cell parameter, without changing the do-
main boundary.

1: Selects pressure as the sensing parameter.

2: Selects density as the sensing parameter.

3: Selects temperature as the sensing parameter.

4: Scales the grid distance in the k-direction up by the value defined
by f ctr j mp parameter.
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maxmnvac

An integer number to assign maximum number of times that grid adap-
tion is performed. The value of zero, however, can be used for unlimited
number of times. Default: 0
max distance

This real number defines maximum distance from the bod y surface that
grid outer boundary can be moved away by any one of the flags. This is
often useful especially when adapting shock into wake, where the adapt-
ing grid may become skewed due to presence of sharp gradients. This
value defines the maximum length of the wake. Default: 1.0E+6

movegrd

An integer number for number of cycles between each grid alignment. A
zero value disables any grid alignment. Default: 0

re-cell

This value defines the target cell Reynolds number at the wall after a
grid movement. Default: 2.0

The cell Reynolds number is defined as

Recett = pcAn/p	 (7)

Here p is the flow density, c is the sound speed, An is the cell height,
and µ is the flow viscosity.

5.4.5 Grid File Description
dimensionality

A string flag to select the dimensions of the problem. Default: '3D'
Available options are:

`axisymmetric'
This option selects axisymmetric flow solution. This requires a
domain with single-cell width in the j-direction.

` 2D'
This selects two-dimensional problem, which requires a domain with
single-cell width in the j-direction.

'3D'
This option solves three-dimensional problems.

grid_convers ion_f actor

This parameter scales the grid to meter. One grid unit equals grid_conversion_f actor
meters. Default: 1
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single precision grid

Logical flag: .true. if grid points in the laura.g file are stored as single
precision values, otherwise double precision is assumed. Default: .false.

5.4.6 Initialization
init_vel_f ctr

A real number between 0 and 1 to reduce the initial velocities u, v, w
within the domain to avoid creating a vacuum for wake flow problems,
which may lead to an invalid solutions. The initial near zero velocity has
also shown to ease up the formation of bow shock. Default: 0.01

5.4.7 Molecular Transport Flags
IVI CC

An integer flag to engage viscous terms (inviscid=0/viscous=2). Default:
2

mass_driven_diff

A logical flag to engage binary diffusion driven by mass fraction gradient.
Default: .f alse.

multi_component_diff

A logical flag to engage multi-component diffusion by Stefan-Maxwell
equation sub-iterations. Default: .false.

mole_driven_diff

A logical flag to engage binary diffusion driven by mole fraction gradient.
Default: .true.

navier_stokes

A logical flag to select equation set for Thin-Layer Navier Stokes or Full
Navier Stokes. The navier_stokes = .false. may be used to select
Thin-Layer Navier Stokes. Default: .false.

pressure_dif fusion

A logical flag to engage pressure diffusion term on Stefan-Maxwell ap-
proximation. Default: .false.

schmidt-number

A constant Schmidt number may be specified to calculate diffusivities.
If the value is negative, diffusivities are computed directly from collision
cross sections. Default: -1.0
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prandtl-number

A constant Prandtl number may be specified to calculate conductivi-
ties. If the value is negative, conductivities are computed directly from
collision cross sections. Default: -1.0

5.4.8 Numerical Parameters
cfll

Initial value of CFL number. Default: 5.0

cf12

Final value of CFL number. Default: 5.0

epsa

Eigenvalue limiting factor. Default: 0.3

hrs

The maximum total CPU time for simulation, hours. Default: 10

iramp

Number of cycles to ramp from cf11 to cf12. Default: 200

irest

An integer flag to start the simulation either using freestream values
(irest = 0), or using the existing solution from laura.rst file (irest = 1).
Default 0

Number of cycles between saves of all output files—see Section G on
page 42. Default: 200

j update

Number of cycles between jacobian updates. Default: 10

ncyc

Number of global iterations. Default: 1000

nexch

Number of cycles between exchange of data between processors and up-
dating boundary conditions. Default: 2

nitfo

Number of cycles using 1st-order spatial accuracy. Default: 0
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nordbc

Boundary condition calculation using 1 st-order (nordbc = 1) or 2nd-

order (nordbc = 2) accuracy. Default: 1

ntran

Number of cycles between transport properties update. Default 1

rf_inv

Inviscid relaxation factor. Default: 3.0
rf_vis

Viscous relaxation factor. Default: 1.0
rf_chem

Chemical source term reduction factor sometimes useful to "ease in"
simulations very close to equilibrium. This factor, which must be greater
than 1.0 when it is used, changes the answers and must ultimately equal
1.0 in the final simulation. Default: 1.0
rmstol

A real number to stop the iterations after L2 norm residual reaches this
value. Default: 1.0E-10

sub iterations

An integer number to control multiple passes through the linear solver,
which has been found to increase robustness for some high energy appli-
cations. Default: 1

5.4.9 Radiation Flags

radiation

A logical flag to enable coupling between radiation equation(s) and flow
equations. See Section 8.2 on page 56 for coupled radiation procedure.
Default: .f alse.

radiation-input-only

A logical flag to enable creation of input file hara_out.m to compute
radiation outside of LAURA when radiation is .false. Default: .false.
 A
An integer number to assign maximum number of calls to radiation in-
terface. The value of zero can be used for unlimited number of times.
Default: 0
nrad

Number of iterations between calls to HARA. Default: 500
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iinc_rad, j inc-rad

Increment between i and j lines, respectively at which radiation profile
is computed. Interim lines are interpolated. Default: 1 (Compute every
line.)

frac_rad_new

Relaxation factor on radiation. V (q,.ad) = f rac-rad_newV ( q,.ad )
n + ( 1 —

frac_rad_new ) V (grad)n-1 • Default: 1.0

absorptivity

Fraction of incident radiative energy absorbed by the wall. Affects sur-
face energy balance and computation of radiative equilibrium wall tem-
perature. Default: 1.0

tw_rad_f lag

An integer flag to engage Tauber-Wakefield approximation for radiation
cooling on surface-energy balance (on=1/off=0). Default: 0

5.4.10 Solid Surface Boundary Condition Flags

catalysis-model-0

A character identifier for selecting catalysis model for surface type 0 (see
Section 5.3 on page 11). This flag is good only for multi-species reacting
gases and will be ignored for single-specie gas models. The catalysis
model name must be surrounded by quotation marks, e.g., ' . Default:
`super-catalytic'

Available catalysis models are:

`COAT-ACC'
This option uses the following surface catalytic coefficients [2] for
catalyzing atomic oxygen and nitrogen to molecular oxygen and
nitrogen, respectively.

_	 13.5e -8350/T,A	 Tw < 1359.0 K	
(g)5.0 X 

10-8e18023/T** T* > 1359.0 K

_	 4.Oe-7625/T,-,	 T,,*, < 1475.0 K

	

'yN — { 6.2 X 
10-6e12100/Tu* Tw > 1475.0 K	

(9)

where Tw is calculated as

* _	 min( max(1255.0, T,„), 1659.0) for -yo
T"' 	 min( max(1255.0, Tw ), 1900.0) for ryN	

(10)
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csic'

This option uses the following surface catalytic coefficients [2] for
catalyzing atomic oxygen and nitrogen to molecular oxygen and
nitrogen, respectively.

-yo = 6.415 X 10-4e3498.4/T* (11)

-^N = 3.993 x 10 -4 e 44o2/T„*, (12)

where Tw is given as

T*, =min( max(1100.0,T,u,), 1920.0)	 (13)

`CSiC-SNECMA'

This option uses the following surface catalytic coefficients [2] for
catalyzing atomic oxygen and nitrogen to molecular oxygen and
nitrogen, respectively.

'Yo = 7N = 9.593 x 10-5e7oo2.9/Tu, 	 (14)

where Tu, is given as

Tom, = min( max(1350.0, T^„), 1920.0)	 (15)

`equilibrium-catalytic'

This option sets species concentrations to equilibrium values at wall
pressure and temperature based on elemental mass fractions in the
cell above the solid surface boundary.

`fully-catalytic'

This option assumes that all the atomic and ionized oxygen, nitro-
gen, carbon, and so forth catalyzes to molecular oxygen, nitrogen,
carbon, and so on, respectively; i.e.,

'YO = 'YN = i'C = ... =1	 (16)

`non-catalytic'

This option assumes that no atomic or ionized oxygen, nitrogen,
carbon, and so forth catalyzes to molecular oxygen, nitrogen, car-
bon, and so on, respectively; i.e.,

-0=7N= -,"C=...=0	 (17)

`RCC-LVP'

This option uses the following surface catalytic coefficients [2] for
catalyzing atomic oxygen and nitrogen to molecular oxygen and
nitrogen, respectively.

_	 7.5e -828s/Tz-	 T,',,< 1499.0 K
	^ o — { 2.5 x 10-7el7533/T,u, Tw > 1499.0 K	

(18)
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'YN	
6.0 X 10-2e-2605/Tu, T^, < 1529.0 K	 (19)

— { 1.5 x 10-5elOO80/Tw Tw > 1529.0 K

where Tw is calculated as

	

T*_ min( max(1255.0, Tw ), 1799.0) for 70	 (20)w	 min( max(1255.0, Tw ), 1954.0) for -YN

`Scott-RCG'

This option uses the following surface catalytic coefficients [3] for
catalyzing atomic oxygen and nitrogen to molecular oxygen and
nitrogen, respectively.

7o = 16.0e-1°271/T„ 1400 < Tw < 1650	 (21)

-YN = 7.14 x 10-ze-2219.°/T 1090 < Tw < 1670	 (22)

The same equations will be used even if the wall temperature, T",
is out of the specified range, in which case a warning will be issued
to the stdout.

`Stewart-RCG'

This option uses the following surface catalytic coefficients [2] for
catalyzing atomic oxygen and nitrogen to molecular oxygen and
nitrogen, respectively.

5.0 X 10-3e-400/Tw T,, < 502
1.6 x j0 -4e 112

' /T- 502 < Tw < 978
70 =	 5.2e-8835/T,,,	 978 < Tw < 1617	

(23)

39 X 10-9e21410/Tw 1617 < 7w

5.0 x 10-4	 Tw < 465

'YN
_	 2.0 x 10- 5 e 1500 /Tu 465 < Tw < 905	

(24)
10.0e. -10360/Tw	 905 < Tw _< 1575
6.2 x 10-6e121oo/T 1575 < Tw

`super-catalytic'

This option sets the species mass fractions to free stream values as
defined in tdata—see Section 5.5 on page 30.

`Zoby-RCG'

This option uses the following surface catalytic coefficients [4] for
catalyzing atomic oxygen and nitrogen to molecular oxygen and
nitrogen, respectively.

70 = 9.41 x 10-3e-858.9/Tw 900 < T,, < 1500	 (25)
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-yN = 7.14 X 1O-2e-2219.O/T- 1090 < T,, < 1670	 (26)

The same equations will be used even if the wall temperature, T,

is out of the specified range, in which case a warning will be issued
to the screen.

emiss_a_0,emiss_b_0,emiss_c_0,emiss_d_0

Real number values to calculate emissivity, E, for solid surface boundary
type (see Section 5.3 on page 11) from the following equation:

E = Ea + EbTw + EJ2 + EdTw	 (27)

where Tw is the surface temperature. Values for E a , Eb , E, and Ed are de-
fined by emiss_a_0, emiss_b_0, emiss_c_0, and emiss_d_0, respectively.
Default: emiss _a_0=0.89, emiss _b_0=0.0, emiss _c_0=0.0, emiss_d_0=0.0

ept

Under-relaxation parameter for radiative equilibrium wall temperature:

qi 1 = (1 — eptg2^) + eptg 7 1	 (28)

where n denotes iteration level, q,' 1 is the most recent value of convective
heat flux, qi ,j, q2j is the value of convective heat flux from the previous
iteration as adjusted by previous application of this formula, and q, 1 is
the newly adjusted value for convective heat flux at the n + 1 iteration
level. Default: 0.01
surf ace-temperature-type-0

Character identifier for surface temperature model selection. Default:
` constant'

Options are:

`adiabatic'

Surface temperature will be such that there is no heat transfer be-
tween the surface and the gas adjacent to the surface.

`constant'

The surface temperature stays constant as given by twall_bc value.

`radiative equilibrium'

The surface temperature is calculated so that the heat flux to the
wall, qw, is in equilibrium with radiation heat flux:

qw = EorV	 (29)

where Q is the Stefan-Boltzmann constant, and E is the surface
emissivity defined by emiss _a_0, emiss _b_0, emiss _ c_0, emiss_d_0
values. J	 J
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`surface energy balance'
This option is required for ablating surfaces to compute surface
temperature as a function of the surface energy balance and the
relevant surface chemistry kinetics.

surf ace-group-name-0

Character descriptor for surfaces with solid surface boundary types (see
Section 5.3 on page 11). Any character can be specified to group solid
surface boundaries. Default: `default surface 0'

twall_bc

Initial wall temperature for solid surface boundaries, K. (See Section 5.3
on page 11.) The wall temperature stays constant as specified by this pa-
rameter if surf ace-temperature-type-0 = ` constant'. Default: 500.0

5.4.11 Thermochemical Nonequilibriuin Flags

chem_f lag

An integer flag to engage chemical source term for non-equilibrium flow
(on=l/off=0). Default: 0

therm_f lag

An integer flag to engage thermal source term for non-equilibrium flow
(on=l/off=0). Default: 0

5.4.12 Time Accurate Flags

itime

An integer flag to engage (itime = 1) or disable (itime = 0) time ac-
curate simulation. Default: 0

subiters

An integer number to specify number of iterations between each time
step for time-accurate simulations. Default: 10

5.4.13 Turbulent Transport Models

prandtl_turb

Turbulent Prandtl number. Default: 0.9

schmidt_turb

Turbulent Schmidt number. Default: 0.9
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turb_int_inf

Farfield turbulent intensity non-dimensionalized by square of the refer-
ence velocity. Default: 0.001

turb-model type

An integer flag to select turbulence modeling. Default: 0

Options are:

-1: Baldwin-Lomax algebraic turbulence model. [5]
-2: Cebeci-Sinith algebraic turbulence model. [5]

0: Laminar flow, i.e., no turbulence model.

turb_vis_ratio_inf

Farfield ratio of turbulent to laminar viscositv. Default: 0.01

xtr

Transition location along x-axis in grid units. Default: 0.0

5.4.14 Venting Boundary Condition Flags

vacuum_pressure_coefficient

This parameter, which is in N/m2 sets the pressure coefficient behind
type G boundaries (see Section 5.3 on page 11), which forces flow out of
the domain. This coefficient is defined as

vacuum-pressure -coefficient = Po 2 p°°. (30)

where po is back pressure where the gas is venting out, and p,, is farfield
pressure. Default: 0.0

vacuum-pressure-factor

Factor on pressure across type G boundary to force flow out of domain.

vacuum -pressure -factor = PO	 (31)
Pi

where pi is the pressure just before the gas vents out. Default: 0.01

5.5 tdata
The gas model is defined in this file. It contains a list of key words, sometimes
followed by numeric values, which identify components of the gas model. One
or more spaces must be present between keyword and values when appearing
oil same line. Spaces may appear to the left or right of any key word. The
first line of the file must not be blank, however.

The following subsections describe available gas model options.
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5.5.1 Perfect Gas

The perfect-gas option is engaged with either of the following keywords:
perfect gas, PERFECT-GAS, Perfect-Gas, or Perfect gas.

If no further data is provided in this file, this single line tdata file will
assume the following parameter values in SI units:

gamma =	 1.4

mol wt =	 28.8

sutherl =	 0.1458205E-05

suther2 = 110.333333

prand =	 0.72

Here, gamma is the gas specific heat ratio, mol_wt is the gas molecular weight,
prand is the gas Prandtl number, and sutherl and suther2 are the first and
second Sutherland's viscosity coefficients, s l and 82, respectively, defined as

7-s/z
u = s i

	

	(32)
T +s2

These values can be modified and explicitly defined in the tdata by the
keyword &species properties in the second line followed by the gas param-
eters and / at the last line of the file. For example,

perfect-gas

&species-properties

gamma = 1.4

mol wt = 28.0

sutherl = 0.1E-05

suther2 = 110.3

prand = 0.7

5.5.2 Equilibrium Gas

To engage the Tannehill curve fits for thermodynamic and transport properties
of equilibrium air [G], the following keyword should be used in the first line of
the tdata file: equilibrium-air-t. No additional inputs or files are required
to engage the Tannehill option for equilibrium air.

To use a table look-up capability for equilibrium gases [7], the following
keyword should be placed in the tdata file, instead: equilibrium-air-r. Note
that this option still uses the Tannehill transport properties.

5.5.3 Mixture of Thermally Perfect Gases

If the gas is a mixture of thermally perfect gases and inulti-species transport
solution is desired the species names followed by their mass fractions must be
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provided in the tdata file. Thermal state of the gas may be defined as the
first entry by either of the following flags:

one
This flag assumes that all the species are thermally in equilibrium state.
That is translational temperature, T, and vibrational temperature, T,
are equal. This is known as one-temperature, 1-T, model.

two
This flag assumes that energy distribution in the translational and rota-
tional modes of heavy particles (not electrons) are equilibrated at trans-
lational temperature, T, and all other energy modes (vibrational, elec-
tronic, electron translational) are equilibrated at vibrational tempera-
ture, T, This is known as two-temperature, 2-T, model.

FEM
This option, called Free-Energy Minimization, causes the species conti-
nuity equations to be replaced with elemental continuity equations and
equilibrium relations for remaining species.

One temperature model is assumed if thermal state of the gas is not provided
in the first line of the tdata file. In this case, the first line must contain species
information. Note, the first line must not be blank.

Subsequent file entries include species names and their mass fractions at
freestream/farfield boundary. Only one specie per line is allowed. The species
mass fraction at the boundary is defined in the same line as the species name
separated by one or more spaces. If no value appears to the right of the species
name then that species is assumed not to be present at the boundary but may
be produced through chemical reactions elsewhere in the flowfield.

Example 1: 1 -T, 5-species air model: In this example, only molecular
oxygen and nitrogen are present on freestream/farfield boundary, but atomic
nitrogen and oxygen and nitric oxide may be produced elsewhere in the flow
field due to chemical reactions.

one

N2 .767

N

02 .233

0

NO

Example 2: 2-T, 11-species air model: In this example, the gas is as-
sumed to be a mixture of It thermally perfect gases. A solution to a thermal
non-equilibrium state of the gas is also desired ( 2-T model).
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two

N2 .767

N

02 .233

0

NO

02+

0+

NO+

e-

5.6 Kara. in

This file is required for coupled radiation simulations and controls the radiation
models used by the HARa radiation module [8, 9]. No lines may be added or
deleted from this file, only the numbers for each option may be altered.

The first section of the file specifies whether a particular radiation mech-
anism is treated. For atomic species, these consist of lines, photoionization
edges, and the negative ion continuum. For molecular species, this consists of
molecular band systems. If the user is unaware of the dominant mechanisms,
then all those associated with species present in the flowfield should be treated.

The part of this file starting with

1 .... specify the N atomic line model

allows the user to choose the atomic line model for each atom. A value of 1
applies the recommended model, which consists of the individual treatment
of strong individual atomic lines and groups of weak multiplets. A value of 2
applies a more approximate model consisting of grouped multiplet lines.

The part of this file starting with

2 .... specify the model for the N electronic states

allows the user to choose the electronic state model applied for each atom.
A value of 1 applies the Boltzmann assumption, while a value of 2 applies
a collisional-radiative non-Boltzmann model, which is recommended for most
applications. The same options apply to

2 .... specify the model for the molecular electronic states

for all molecular band systems.
The line

1 .... use triangles to for optically thin atomic lines?

Users_Manual.tex	 33	 Rev: 41601, August 10, 2009



specifies whether optically-thin atomic lines are modeled as triangles to re-
duce computational time. This option has shown to result in a negligible loss
of accuracy while greatly reducing the computational time, and is therefore
recommended.

The final line specifies whether a photoionization edge shift is applied. For
most applications this this option may be set to 0.

5.7 kinetic data

This file defines possible chemical reactions and is optional. By default,
kinetic data is read from [install-prefix] /share/physics-nodules, but
if present in the local run directory, LAURA will read reactions from the local
file instead."

Reactants and products can be any species defined in the species_thermo_data
file—see Section 5.12 on page 37. A sample entry looks like this,

02+M	 <_> 20+M

2.00Oe+21 —1.50 5.936e+04
	

2

teffl = 2
	

3

expl = 0.7
	

4

t eff min = 1000.	 s

t eff max = 50000.	 6

C = 5.0

0 = 5.0
	

s

N = 5.0
	

e

H = 5.0
	

io

Si = 5.0
	

11

e— = 0.	 12

The first line specifies the reaction while line 2 provides three coefficients of
an Arrhenius-like equation,

IL f = cfT7 e-
EO/kTeff	 (33)

where c f is the pre-exponential factor, q is the power of temperature depen-
dence on the pre-exponential factor, Eo is the Arrhenius activation energy, and
k is the Boltzmann constant. The arrowheads in line 1 signify the allowed
directionality of the reaction. The symbol => denotes forward reaction only
while <_> denotes forward and backward rates are computed. The coeffi-
cients in line 2 correspond to c f , 77, and co /k, respectively. For reactions with
a generic collision partner, M, such as this one, these coefficients correspond
to Argon; and other collision partners and their efficiencies (multipliers of c f)

"The precise installation location is given by LAURA during startup. It can also
be found on Unix-like systems from the executable itself by issuing the command
strings laura I grep share.
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are specified on lines following line 5 and 6, which give the valid temperature
range for the reaction. The effective temperature, Teff , is defined according
to a given integer number in line 3; Default: 2

teff 1.teff2

Flag defining formula to compute the effective temperature Te f f for the
forward rate and backward rate, respectively. It is engaged for the case
of thermal nonequilibrium. Options for tef f are:

1: Teff = Ttr

2: T ff = Ttr
exP1Tv1_exP1

o 

3: Teff = T"

where Ttr and T, are translational and vibrational temperatures, respec-
tively. Default: 1

exp1

The exponent used to define the effective temperature when teff 1 = 2
(forward rate) or teff2 = 2 (backward rate). See previous equations for
teff options. Default: 0.7

t_eff-min

The minimum temperature for Te f f to compute reaction rates to circum-
vent stiff source terms. Default: 1000.

t in f max

The maximum temperature for Teff to compute reaction rates to cir-
cumvent stiff source terms. Default: 50000.

5.8 laura.rst

This Fortran-unformatted binary file has the flowfield solution for every grid
cell, boundary surface values, and grid cell derivatives for each block face.
The number of variables in this file varies depending on number of conserva-
tion equations that LAURA needs to solve as specified through the tdata and
laura-namelist_data files. A rile of this format, but named laura-new.rst "4

is generated by LAURA at the end of a successful run. The laura.rst file is re-
quired only if restarting from a prior run, i.e., irest = 1 in laura-namelist_data
as described in Section 5.4.8 on page 23.

141.1rhen running a trajectory sequence, the file will be named Laura-####.g where ####
is the trajectory point index.
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5.9 laura.trn

Turbulent transition location and transition length are specified in laura.trn.15
One line of data consisting of four integers followed by at least one space with
the following entries per block is required: block-.umber, turbulent flag,
transition location. and trans ition_length_factor where

turbulent flag
One of -1, 0, or 1, which correspond to laminar, transition location in
block, or fully turbulent flow, respectively.

transition location
Specified as an x coordinate. This value used only if turbulent flag
is 0.

transition-length-factor
Defined as (transition length) /L, where L is the distance from the nose
to the transition location. Use 0 for instantaneous transition.

5.10 laura_traj ectory_data

This file is used to sequentially simulate points along a trajectory. Each line of
the file defines a single trajectory point. The trajectory point data is entered
in free format with time, velocity, density, temperature, alpha, and yaw in
MKS units (G entries per line). The simulation will start at trajectory point 1
by default unless another line number is specified ill laura-name list-data
using the namelist variable trajectory-data-point.

The restart solution files and post processing files for each trajectory point
are saved with a four digit number added to the usual root name of these files
corresponding to the trajectory point number.

5.11 laura_vi s_dat a

This file contains the data set that overrides the default viscous terms in the
i-, j-, and k-directions. There are four integers consisting of block number
and toggles for each viscous term per line in this file: blk_num, ivis, jvis,
and kvis where ivis, jvis, and kvis are viscous terms in the i-, j-, and
k-directions, respectively. The viscous-term flag options are:

0: Viscous terms are not engaged ill 	 respective direction; i.e. inviscid
flow.

"LAURA transition files from versions prior to 5 can also be used.
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1: Viscous terms and a reduced eigenvalue limiter are engaged in the respec-
tive direction. The reduced eigenvalue limiter is to prevent distortion of
computed heating.

2: Viscous terms are engaged but an unmodified eigenvalue limiter is re-
tained to maintain stability.

The following defaults will be applied if this file is not present in the working
directory:

If ivisc = 0 in laura-namelist_data (see Section 5.4 on page 13) then
inviscid flow is specified and ivis, jvis, and kvis are set to zero for all blocks
by default.

If ivisc = 2 and navier_stokes = .false. in the laura-name list-data
file then the default is a function of the wall boundary condition. If the wall
boundary on the i r,,,i, or face of block n. is a solid surface (see Section 5.3
on page 11) then ivis (n) = 2, otherwise ivis (n) = 0. In like manner, if the wall
boundary on the j,,,i.,,. or j,,,Ux face of block n is a solid surface then jvis(n) = 2,
otherwise jvis (n) = 0. The default specification for kvis (n) is set to 1 if k:,,,, 27, or
k,,,o,x of block n is a solid surface, otherwise kvis(n) = 0. This default recognizes
that the standard orientation is for the solid wall on the k,ni,,, surface and the reduced
eigenvalue limiter is required in this case.

If ivisc = 2 and navier_stokes = .true. in lauramamelist_data then the
default is ivis = 2, jvis = 2, and kvis = 1 for all the blocks.

There may be circumstances where the user wishes to override these defaults. If
a block is away from the stagnation streamline crossing the shock into the boundary
layer then a more accurate heating on side walls (i and/or j) will be returned using
ivis and/or jvis set to 1 without sacrificing stability. In the case of cavities, a
block may sit over a cavity and not have any solid boundaries itself but has a well
defined boundary layer streaming into it from an adjacent block. In this case, even
though the block has no solid boundaries itself, it should engage viscous terms to
capture the entering shear layer.

Example: To override the default values and to reset viscous terms in block
number 3 to ivis = 1, jvis = 0, and kvis = 1, and in block number 5 to ivis =0,
jvis =1, and kvis =1 the laura_vis_data would look like:

3 1 0 1

5 0 1 1

5.12 species_thermo_data
The species_thermo_data file is the master file for species thermodynamic da,ta,.16
Each species record consists of the species name, a species properties namelist -
&species_properties, the number of thermodynamic property curve fit ranges,
and the curve fit coefficients for each range [10]. No blank line is allowed in this file.

16 The species_thermo_data file should only be changed by developers.
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Elements of the &species properties namelist are:
Tnnl arnl a

A logical flag to determine whether the species is molecule (composed of more
than one atom), the species is molecule then molecule = .true., otherwise
molecule = .false.

ion

A logical flag to identify the charged particle. ion = .true. for charged par-
ticles except for neutrals and electrons. This flag initializes electron-neutral
energy exchange cross section and sum of the charges.

charge

An integer number to determine number of positive charges in particle. If
ion = .false. then charge = 0.

elec_impct_ion

This real number to set the energy for neutrals (i.e. ion=.false.) in electron
volts (eV) that is required to liberate an electron when the neutral impacts
with free electron.
M n l 4T+

A real number to set the molecular weight of the particle. This parameter is
always required.

siga

An array of three real numbers, which correspond to curve fit coefficients for
electron-neutron energy exchange cross section defined as

a,,, = a + bT -I- cT 2 	 (34)

where a, is the electron-neutron energy exchange collision cross section in
1112 , a, b, and c are the curve fit coefficients, and T is the gas temperature
[11,12]. The format to define these coefficients is siga=a, b, c. For example,
siga=7.5e-20, 0, 0.

tli am anar

A real number to set dissociation energy of molecule in electron volts (eV).
al nn+al

A real number to set Landau-Teller constant to compute vibrational relaxation
time for molecule. These are defined in Ref. [13]. This variable is required if
molecule=.true..

cprt0

A non-dimensional real number that defines translational-rotational heat ca-
pacity that is normalized by gas constant. This is equal to

cprt0 _ f 2 2	 (35)
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where f is the number of degrees of freedom in translation and rotation. The
defaults for atoms and diatomic molecules are 2.5 and 3.5, respectively.

Example: A portion of the species_thermo_data that provides thermodynamic
properties of carbon is shown below.

z
3

4

s
6

7

s
9

10

11

C
&species-properties
molecule = .false.
ion = .false.
charge = 0
elec - impct -ion = 11.264
siga = 7.5e-20, 5.5e-24, -i.e-28
mol wt = 12.01070

3
0.64950315E+03 -0.96490109E+00 0.25046755E+01 -0.12814480E-04
0.19801337E-07 -0.16061440E-10 0.53144834E-14 0.00000000E+00
0.85457631E+05 0.47479243E+01 	 200.000 1000.000

12

13

14

15

16

17

18

19

-0.12891365E+06
0.17420927E-06
0.84105978E+05
0.44325280E+09
0.66495953E-06
0.23552734E+07

0.17195286E+03
-0.29028178E-10
0.41300474E+01

-0.28860184E+06
-0.22300788E-10
-0.64051232E+03

0.26460444E+01 -0.33530690E-03
0.16421824E-14 0.00000000E+00
1000.000 6000.000
0.77371083E+02 -0.97152819E-02
0.28993887E-15 0.00000000E+00
6000.000 20000.000

The species name is defined in line 1. Between lines 2 and 9 species properties are
defined. These parameters and/or flags state that the carbon molecular weight is
12.0107, and the species is neither a molecule nor a charged particle, but it can
liberate an electron when its energy reaches 11.264 eV after it is impacted with a
free electron.

Line 10 shows that there are three thermodynamic property curve fits for tem-
perature ranges of 200 K < T < 1,000 K, 1,000 K < T < 6,000 K, and 6,000 K
< T < 20,000 K. Each data range consists of 12 real numbers with a restriction of
4 real numbers per line. The first 10 real numbers are the thermodynamic curve fit
coefficients, and the last two real numbers identify the temperature range for the
given curve fit coefficients. These coefficients are used to calculate the following
thermodynamic properties

	

cp (T)/R = a 1 T-2 + a2 T-1 + a3 + a4T + a5T2 + a6T3 + a7T4	 (36)
2	 3	 4

h(T)/RT = -a1T-2 + a2T -1 1n T + a3 + a.4 2 + a5 3 + a6 4 + a7 5 + T (37)
2	 2	 3	 4

s(T)/R = -a1 T - a2T -1 + a3 ln T + a4T + 
a57 + a

6
T 

+ a7T + a10 (38)
2	 2	 3	 4

where T is the gas temperature, R is the universal gas constant, ep, h and s are
the species specific heat, enthalpy and entropy, respectively, and ai are the provided
curve fit coefficients in species_thermo_data.
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The following corrections will be applied if the gas temperature is out of the
given range for the given curve fit coefficients:

cp (T) = cp(T*)
	

(39)

h(T) = h(T* ) + (T - T* )cp (T* )	 (40)

S(T) = s(T* ) + In 
T* 

cp(T* )	 (41)

where
T* = flower for T < Tlower	 (42)

Tupper for T > Tupper

5.13 species_transp_data

This file 17 contains log-linear curve fit coefficients for species collision cross section
that are defined based on temperature range of 2,000-4,000 K [14]. This temperature
range spans boundary-layer temperatures for typical hypersonic entry. The curve fit
for the given coefficients is poor, however, at temperatures below 1,000 K. A higher
order curve fit data is available in species_transp_data_0, which supersedes that
of species_transp_data-see Section 5.14.

Ar Ar	 1

-14.6017 -14.6502 -14.5501 -14.6028 ! trr132+kestin et al 	 z

Ar+ Ar+	 3

-11.48 -12.08 -11.50 -12.10 	 4

Ar N2	 s

-14.5995 -14.6475 -14.5480 -14.5981 ! kestin et al	 s

Ar CO	 7

-14.5975 -14.6455 -14.5459 -14.5964 ! kestin et al 	 s

5.14 species_transp_data_0

This file 18 provides collision cross section coefficients for a higher order curve fit
data [15,16] than those are in the species_transp_data file-see Section 5.13. The
data in specie s_transp_data_0 supersedes the data, in species_transp_data if the
file is placed in the working directory hosting the simulation.

02 N	 1 1 1	 (c)

-1.1453028E-03 1.2654140E-02 -2.2435218E-01 7.7201588E+01

-1.0608832E-03 1.1782595E-02 -2.1246301E-01 8.4561598E+01

1.4943783E-04 -2.0389247E-03 1.8536165E-02 1.0476552E+00

NO N	 1 1 1	 (c)

-1.5770918E-03 1.9578381E-02 -2.7873624E-01 9.9547944E+01

"'The species_transp_data file should only be changed by developers.
18The species_transp_data_0 file should only be changed by developers.
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-1.4719259E-03 1.8446968E-02 -2.6460411E-01 1.0911124E+02

2.1014557E-04 -3.0420763E-03 2.5736958E-02 1.0359598E+00

NO 0	 1 1 1	 (c)

-1.0885815E-03 1.1883688E-02 -2.1844909E-01 7.5512560E+01

-1.0066279E-03 1.1029264E-02 -2.0671266E-01 8.2644384E+01

1.4145458E-04 -1.9249271E-03 1.7785767E-02 1.0482162E+00

END END 1 1 0

0. 0. 0. 0.

0. 0. 0. 0.

5.15 surface-property-data
This file is required if there are more than 1 solid surface boundary types (see
Section 5.3 on page 11) and the surface conditions of these solid surfaces differ from
those specified in laura-namelist-data (see Section 5.4 on page 13).

Surface boundary properties of each solid surfaces must be bounded by:

&surface-properties

The first instance of the parameters defines properties for surfaces of type -1 (note
that properties of type 0 are defined in laura-namelist_data), the second instance
defines properties for surfaces of type -2, and so on (see Section 5.3 on page 11 for
different solid surface types.)

The parameters that can be defined for each solid surface boundary are:

blowing-model

See Section 5.4.1 on page 13 for more details and a complete list of options.
Default: 'none'

catalysis-model

See Section 5.4.10 on page 25 for more details and a complete list of options.
Default: 'super- catalytic

char density

Density of the char, kg/m 3 . Default: 256.29536

CHONSi_f rac_char

See Section 5.4.1 on page 13 for more details and a complete list of options.
Default: CHONSi_frac_char = 1.0 , 0.0 , 0.0 , 0.0 , 0.0

CHONSi-f rac_pyrolysis

See Section 5.4.1 on page 13 for more details and a complete list of options.
Default: CHONSi-frac_pyrolysis = 1.0, 0.0, 0.0, 0.0, 0.0
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emiss_a, emiss_b, emiss_c, emiss_d

Real numbers to assume emissivity constant coefficients for solid surface bound-
ary type (see Section 5.3 on page 11) surface emissivity, E, which is calculated
as

E = Ea + Eb T,,, + EcT 2 + EdT u	 (43)

where T„ is the surface temperature. Values for Ea, Eb, c , and Ed are defined
by emiss_a, emiss_b, emiss_c, and emiss_d, respectively. Default: emiss_a=
0.89, emiss_b=0, emiss_c = 0, and emiss_d=0

h_ablation

See Section 5.4.1 on page 13 for more details and a complete list of options.
Default: 0.0

mdot pressure

See Section 5.4.1 on page 13 for more details and a complete list of options.
Default: 0.0

surface-group-name

Character descriptor for surfaces with solid surface boundary types—see Sec-
tion 5.3 on page 11. Any character can be specified to group solid surface
boundaries. Default: `undefined surface'

surface temperature

Initial wall temperature in K for the solid surface boundary. This variable
is similar to twall_bc in Section 5.4.10 on page 25. The wall temperature
stays constant as specified by this parameter if surf ace-temperature-type
_ 'constant'.  Default: value of twall_bc.

surf ace_temperature_type

A character identifier for surface temperature model. See Section 5.4.10 on
page 25 for options and their descriptions. Default: ` constant'

t al,l ati nn

See Section 5.4.1 on page 13 for more details and a complete list of options.
Default: 0.0

virgin density

Density of virgin material, kg/m 3 . Default: 544.627742

6 Output Files
LAURA generates the files listed in Table 2 on the facing page regardless of inputs
specified. A description of each output file is presented after a brief discussion of
stdout output.
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Table 2: LAURA output files.

Filename Content Format

laura.mcr Variables names in laura.q TecplotT"
laura.q Flowfield solution PLOT3D
laura_blayer.dat Boundary layer edge data TecplotT"
laura_conv.out Time step, CPU time, and residuals ASCII
laura-new.g Volume grid PLOT3D
laura-new.rst Flowfield solution for restart Binary
laura_surface.mcr Variables names in laura_surface.q TecplotT"
laura_surf ace.g Surface grid PLOT31)
laura_surf ace.q Surface solution PLOT31)

In addition to files, LAURA writes some information on the screen. After initial
configuration information such as grid block sizes, lauramamelist_data specifica-
tions, and tdata gas physics, the screen output is divided to five distinctive cate-
gories: block number, task number, L,,, including location and equation, and L 2 of
mixture continuity, xyz-momenta, and energy equations.

The L2 norm is defined as

L 2 = ^ 
C RZ 2	

(44)
Z-^ \ Pi

where N is the total number of grid cells times the number of conservation equations,
R is the residual, and p is the mixture density.

The location of the maximum L,, residual is shown by four integer numbers after
the norm itself. The first three integer numbers correspond to i-, j-, and k-indices of
the corresponding block, and the last number is the equation number, n_egn. The
total number of equations, n-eqn- max, is defined as

n_egn-max = n_species + 3 + n_energy 	 (45)

where n_species and n_energy are number of species and energy equations, respec-
tively. The equation number corresponding to species is based on the species order
defined in tdata followed by the x-, y-, and z-momentum equation numbers. For
example, consider block 11 for the following sample screen output,
Reading block sizes from laura.g
block = 10 task =	 10 Linf: 0.63E+02 23 24 86 1 L2eq: 0.31E+00 0.11E-01 0.12E-01 0.12E-01 0.32E-01 0.27E-02

> block = 11 task =	 it Linf: 0.12E+04 21 2 86 14 1.2eq: 0.42E+OS 0.10E+01 0.17E+00 0.95E+00 0.88E+00 0.28E-OS <
block = 12 task =	 12 Linf: 0.31E+03 11 7 87 5 1.2eq: 0.20E+OS 0.38E+00 0.22E+00 0.28E+00 0.35E+00 0.11E-0S
block = 6 task =	 6 Linf: 0.68E+02 6 24 87 1 L2eq: 0.39E+00 0.17E-01 0.80E-02 0.28E-01 0.37E-01 0.32E-02
block = 2 task =	 2 Linf: 0.66E+02 3 24 87 1 1.2eq: 0.49E+00 0.27E-01 0.88E-02 0.53E-OS 0.53E-OS 0.38E-02
block = 4 task =	 4 Linf: 0.17E+03 24 1 87 14 1.2eq: 0.89E+00 0.12E+00 0.47E-OS 0.14E+00 0.12E+00 0.75E-02
block = 9 task =	 9 Linf: 0.65E+02 21 24 86 1 L2eq: 0.43E+00 0.26E-01 0.36E-01 0.47E-01 0.48E-01 0.32E-02
block = 14 task =	 14 Linf: 0.78E+02 2 24 86 1 1.2eq: 0.66E+00 0.63E-01 0.27E-OS 0.22E-OS 0.67E-OS 0.36E-02
block = 7 task =	 7 Linf: 0.71E+03 14 2 87 14 1.2eq: 0.27E+OS 0.51E+00 0.11E+00 0.69E+00 0.55E+00 0.22E-OS
block 1 task =	 1 Linf: 0.22E+03 24 4 87 14 L2eq: 0.11E+OS 0.13E+00 0.29E-01 0.14E+00 0.13E+00 0.90E-02
block 8 task =	 8 Linf: 0.26E+03 6 1 87 14 L2eq: 0.10E+01 0.14E+00 0.97E-01 0.19E+00 0.16E+00 0.82E-02
block = 5 task =	 5 Linf: 0.78E+02 1 24 87 1 1.2eq: 0.47E+00 0.22E-01 0.23E-OS 0.52E-OS 0.50E-0S 0.35E-02
block = 3 task =	 3 Linf: 0.45E+03 24 16 87 14 L2eq: 0.21E+01 0.35E+00 0.80E-01 0.41E+00 0.34E+00 0.18E-01
block = 13 task =	 13 Linf: 0.15E+03 17 2 87 5 L2eq: 0.98E+00 0.73E-01 0.63E-01 0.65E-01 0.88E-01 0.39E-02
step	 = 10	 time = 57.20 sum(abs(task error)) =	 0.28E+02 L2 norm =	 0.17E-02
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which is for 14-block, 11-species, two-temperature case. The maximum change is
shown to be from z-momentum equation n_egn=14 located on i=21, j=2, and k=86
of block 11.

See Section 7.5 on page 49 for a description of the laura_stdout_to_tec utility,
which can convert this output into a TecplotT"-compatible format.

6.1 laura.mcr
Tecplot" macro used to label variables contained in laura.q file.

6.2 laura.q
PLOT31) function file for post-processing volume solution. Most of the variables
in this file are non-dimensionalized according to Table 3. The actual number of
variables in this file depends on the condition specified in the input files.

Table 3: laura.q variables

Variables Definition	 Normalized by

CN,N2,... Species mass fraction -
u, v, w Velocity components U.
E Total energy per unit mass U00
ej Energy mode j per unit mass U2
T Translational temperature -
Tv Vibrational temperature -
p Density Poo
Mw Molecular weight -
P Pressure p^ U00
C Sonic velocity U.
e Static energy per unit mass U00
ev Vibrational energy per unit mass U00
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6.3 laura_blayer.dat

Boundary layer edge, and wall surface properties and shock stand off distance are
written in this ASCII and Tecplot T" readable file. Below is an example showing the
header of the file with their orders. Note that the species mass fraction will be
written in the exact same order as provided by user in tdata file—see Section 5.5.
Also, the vibrational temperature will only be written if two temperature is selected
in tdata.

In addition to these properties, angle-of-attack, Mach and Reynolds-number-
per-grid-unit will be provided in this file as auxiliary parameters.

TITLE ="BL EDGE PROPERTIES"

VARIABLES = "xw (m)"
llyw (m) 11

If
	 (m)"

"rhow (kg/m"3)"

"pw (Pa)"

"Tw (K)"

"Tvw (K)"

"Hw (J/kg)"

"muw (Pa.$)"

"c<sub>N2</sub>w"
"c<sub>02</sub>w"
"c<sub>N</sub>w"
"c<sub>O</sub>w"
"c<sub>NO</sub>w"
"qw (W/m-,2)

"tauwx (Pa)"

"tauwy (Pa)"

"tauwz (Pa)"

"rhoe(kg/m"3)"

"Pe (Pa)

"Te (K)"

"Tve (K)"

"He (J/kg)"

"ue (m/s)"
li ve (m/s)"
"we (m/s)"
"Me"

"mue (Pa.$)"

"c<sub>N2</sub>e"
"c<sub>02</sub>e"
"c<sub>N</sub>e"

"c<sub>O</sub>e"

"c<sub>NO</sub>e"
"delta (m)"
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"deltastar (m)"

"theta (m)"

"Re-ue (1/m)"

"CH (kg/m-2.$)"

"Stand-off (m)"

DATASETAUXDATA Common.AngleOfAttack="-70.000"

DATASETAUXDATA Common.ReferenceMachNumber= " 7.130"
DATASETAUXDATA Common.ReynoldsNumber= " 4037.	 "
ZONE T="laura-blayer: Block 1"

6.4 l aura_c onv. out
Time steps and residuals history are written in this file. Some of the flow conditions,
such as angle-of-attack, free stream conditions, Mach number, Reynolds-number-
per-grid-unit, etc. are also repeated at the beginning of the file. As shown in the
following sample, step number, clock time, sum of all the residuals in all active tasks,
and the overall L2 norm of the residuals are written in this file. The overall L2 norm
is defined as:19

L2 = Ei(lrhsiI/Pi)2	
46

CFL2

where rhs is the residual and p is the density.

Step	 0 time=	 4.53

step =	 10 time =	 10.87 sum(abs(task error)) = 0.27E-03 L2 norm = 	 0.92E-12

step =	 20 time =	 17.13 sum(abs(task error)) = 0.26E-03 L2 norm = 	 0.88E-12

step =	 30 time =	 23.40 sum(abs(task error)) = 0.25E-03 L2 norm = 	 0.84E-12

step =	 40 time =	 29.65 sum(abs(task error)) = 0.25E-03 L2 norm = 	 0.81E-12

See Section 7.4 on page 49 for a description of the laura-conv_to_tec utility, which
can convert this file into a Tecplot"-compatible format.

6.5 laura-new.g
The PLOT3D grid file includes any changes associated with grid adaptation or grid
doubling during the run. The name must be changed to laura.g if user wants to
restart with this new grid on the next run—see Section 5.2 on page 10 for more
information on the file format.

6.6 laura-new.rst
The restart file contains volume and surface data required for restart from end of
current run. The name must be changed to laura.rst if user wants to restart from
this new solution file.

19 The overall L 2 norm definition is different than the L2 norm defined for each equation
by Equation 44.
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6.7 1 aura surf ace.mcr

Tecplot" macro used to label variables contained in laura_surface.q.

6.8 laura_surf ace.g

PLOT31) 3d whole multiblock surface grid file. See Section 5.2 on page 10 for more
information on the file format.

6.9 laura_surface.q

PLOT31) function file for post-processing surface solution. The number of variables
in this file depends on the conditions specified in the laura-namelist_data. Some
of the surface variables are presented in Table 4.

Table 4: laura-surface.q variables.

Variables Definition Unit

T Surface temperature l\_
P Surface pressure N/m2
Tx, Ty, Tz Nall shear stresses N/m2
gcaav Convective heat flux W/cm2
q,.ad Radiative heat flux W/cm2
E Surface emissivity -
mdot Blowing or Suction rate kg /1112-s

7 Laura Utilities
LAURA has several interactive utilities that automatically generate some of the re-
quired input files or otherwise aid running and post-processing LAURA simulations.
These utilities are explained here:

7.1 bounds

This interactive utility creates laura_bound-data that contains block connectivity
data. This utility reads the volume grid data from a PLOT31) structured grid,
laura.g. See Section 5.2 on page 10 for more detail on the file format. Here is a
sample of an interactive session with bounds:

Enter precision of laura.g : 1 = single, 2 = double

2

Do you want all type 9 bounds to default to type 8?

Enter 1 for yes or 0 for no: (0)

0
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BLOCK =	 1 k = 1 BOUNDARY

Area =	 0.26821087E+03

(Xcntr,Ycntr,Zcntr) = (-0.63020306E+02, 0.91387367E+02,-0.63128987E+03)

Enter ITYPE: (0)

0

The first question is about the precision of laura.g. Note that any grid file
created by LAURA or one of its utilities is created in double-precision.

The second question is about type 8 and type 9 boundary data. These boundary
types are given for the block faces that are shared between two blocks. A type 9
requires an identical orientation of indices across the shared boundary (increasing
i to increasing i, increasing j to increasing j, and increasing k to increasing k). A
type 8 accommodates more general connectivity.

7.2 convert-bound-data

The utility converts old (pre LAURA.5) STRTfiles/bound_data.strt files to the
new laura_bound_data format. Usage: convert-bound-data bound_data.strt.

7.3 convert_laura

This interactive utility converts cases run with prior versions of LAURA.5—see
Appendix A on page 62. This utility generates laura.g, from old.rst, and a new
restart, laura-new.rst.

The following file are either required or optional prior to the execution of this
utility:

old.2eq

This file, which may have a different root name, has two-equation turbulent
model information. This file is optional.

old.ep+

This file, which may have a different root name, has algebraic turbulent model
information. This file is optional.

old.gtw

This file, which may have a different root name, has surface temperature
information. This file is optional. If this file is provided, free stream density
and velocity are also needed. LAURA uses this information to approximately
calculate the related parameters needed to be in laura-new.rst.
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old.rst

This file, which may have a different root name, is the old restart file that
contains volume and surface data. The utility will ask for the precision of the
data and the numbers of grid-blocks that are in this file. This file is required.

laura_bound_data

Use the convert-bound-data utility, or see Appendix A on page 62 to convert
this file from old format. This file is required.

7.4 1 aura_conv_t o_t e c
This utility translates the LAURA convergence history file, laura_conv.out, de-
scribed in Section 6.4 on page 46 into a form usable by TecplotT"
Usage: laura_conv_to_tec [options] .

7.5 1 aura_stdout_t o_t e c
To allow task-specific convergence history plotting, this utility translates the LAURA
standard output stream described in Section 6 on page 42 into a convergence history
file for each task suitable for Tecplot"
Usage: laura_stdout_to_tec [options] [file].

7.6 make-as sign_tasks
Given the number and blocks and processes, the make-assign-tasks utility will
generate a, default assign tasks (point relaxation with k-sweeps).
Usage: make-assign-tasks n_blocks n_processes.

7.7 self start
This interactive utility generates a single-block structured grid, laura.g, for fam-
ilies of 2D, axisymmetric and 3D blunt bodies. This utility will also generate
laura-bound data. Schematics of several blunt body families are shown in Figure 3
on the next page. Note that for axisymmetric geometries, the symmetry boundaries
must be on the y-axis. Parameters for defining a probe shape are shown in Figure 4
on page 51.

7.8 shuffle_laura
This interactive utility modifies (shuffles) variables in the LAURA restart, laura.rst,
to enable continuation of simulation if the gas model variables or parameters includ-
ing number of species, thermal nonequilibrium, radiation, ablation, and turbulence
model are modified. The users will be prompted to provide necessary information.
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(b) Custom aerobrake.
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(c) Asymmetric 3D cone.

Figure 3: Sample geometries generated by self start utility.

8 Sample Cases
8.1 Sphere: 5-species Air, Thermo-chemical Nonequi-

librium
A working directory is created in which all requisite files are assembled. The utility
self start is used to generate a grid and the initial template for some required
input files within this working directory. A verbatim transcript of an interactive
session using self start follows.

self_start

Select dimensionality:

1 = Axisymmetric

2 = Two-dimensional

3 = Three-dimensional

1

Select geometry:

1 = Conic (cone/wedge, paraboloid, etc.).

2 = Aerobrake (includes AFE without axis singularity).

2

Select aerobrake type:
0=AFE
1 = hemisphere

2 = customized aerobrake

1

Enter radius (m) {	 1.0000001:

1.

Select number of cells along symmetry plane.

30

Enter number of cells in k direction, prior to any doubling

16
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6 body half-angle

8 rake angle

i turning angle

C nose eccentricity, b/a

RSh shoulder radius

RN nose radius

RB base plane radius

Elliptic nose

, ase plane of radius RB

R_.

Figure 4: Definition of probe shape parameters used by self start.

At this point the grid file laura.g, the boundary data file laura_bound_data,
the task assignment file assign tasks, and the namelist file lauramamelist_data
are created. The boundary data file does not require any further modification. The
task assignment file is set for point-implicit relaxation - the standard practice for
starting any simulation. The namelist file requires editing to define free stream
conditions and possibly alter default settings. The edited file used for the first run
of the test case follows.

&laura namelist

velocity-ref = 5000.	 !	 reference velocity, m/s

density-ref = 0.001	 !	 reference density, kg/m"3

tref = 200.0 ! reference temperature, K

alpha = 0.000	 ! pitch angle, degrees

twall -bc = 500.0 !	 initial wall temperature, K

chem-flag = 1 ! 0 chemically frozen,	 1 chemical source on

therm-flag = 1 ! 0 thermally frozen,	 1 thermal source on

irest	 = 0 !	 0 for fresh start, 	 1 for restart

ncyc	 = 2000 ! global steps

jupdate	 = 4 ! steps between update of jacobian

ntran	 = 4 ! steps between update of transport properties

nitfo	 = 1500 ! number of 1st-order relaxation steps

iterwrt	 = 200 ! steps between saves of intermediate solution

rf - inv	 = 3.0 ! inviscid relaxation parameter

rf -vis	 = 1.0 ! viscous relaxation parameter
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movegrd = 100 ! number of steps between calls to align-shock

maxmoves = 0	 ! maximum number of calls to align-shock

re- cell = 0.1 ! target cell Reynolds number at wall

fsh	 = 0.6 ! target bow shock position arc length fraction

kmax-error = 0.005 ! error norm for doubling grid in k-dir.

kmax-final = 64 ! max number cells in k dir after all doubling

nexch	 = 2	 ! steps between exchange of info in mpi

frac -line - implicit = 0.7 ! fraction of line by block tri-dia

surface -temperature -type-0 = 'radiative equilibrium'

catalysis -model -0 = 'super-catalytic'

emiss a 0 = 0.89

ept = 0.010	 ! relaxation factor on read eq wall be

axi - symmetric = .true.

two-dimensional = .false.

xmc =	 0.0000

ymc =	 0.0000

zmc =	 0.0000

grid- conversion-factor =	 1.0000

sref = 0.43633E-01

cref =	 2.0000

The first 5 variables of the namelist in this particular template (other variable
orderings are acceptable) deal with free stream conditions. The user must set these
values, otherwise the user will get the default values assuming laminar flow of a per-
feet gas at 5 km/s and 0.001 kg/m 3 . In this case both the them-flag and therm flag
are reset to 1 to turn on the chemical and thermal source terms. Other template
values are defined to provide a reasonable compromise between solution robustness
and convergence rate for a fresh start solution (irest = 0). The template calls for
2,000 relaxation steps (ncyc) in the initial run with jacobian updates (jupdate) and
transport property updates (ntran) requested every four relaxation steps. The first
1,500 iterations are executed using first-order spatial accuracy (nitfo)—second-
order accuracy does not contribute significantly to the solution evolution in the
initial relaxation period. The inviscid and viscous relaxation factors ( rf _inv = 3
and rf_vis = 1 ) multiply the respective contributions to the Jacobian matrices
and provide damping of the update. Larger values sometimes improve robustness
for more energetic flows but are not required in this case.

Template values for grid movement are movegrd = 100, maxmoves = 0 (unlimited
number of moves), re-cell = 0.1, and fsh = 0.6. These values are approximately
tuned for optimal response in the opening relaxation process from a fresh start
where the body materializes in a supersonic flow. Allowing the grid to move every
100 steps provides frequent opportunity to follow the evolution of the shock front
as it initially is collapsed on the surface and then reflects off the surface into the
oncoming flow. Setting re-cell to 0.1 provides very tight stretching near the wall.
If there is a large difference between the wall temperature and the temperature of
the first cell center off the wall then the upwind algorithm may fail to sense the wall
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- the boundary condition using the Roe's averaged interface may admit a supersonic
flow directed toward the wall at the interface. This condition subverts the abilit y of
the inviscid, no-slip boundary to properly engage. The tighter near wall resolution
enables the upwind scheme to sense the wall under all wall temperature conditions
tested to date. Setting f sh 0.6 targets the captured bow shock location at 60% of
the distance between the wall and the inflow boundary, providing adequate margin
for the shock to reflect outward without striking the inflow boundary prior to the
next grid update.

Automated grid doubling in the k- direction is controlled by the triggering error
norm magnitude (kmax_error = 0.005) and the maximum number of cells in the k
direction (kmax_final 64). Recall that the grid was initialized with only 16 cells
in the k direction with the self start utility. The grid will double to 32 cells in the
k direction (normal to the wall) when the L2 norm first drops below 0.005. It will
double again when the error norm next falls below this trigger point. The selection
of a trigger point for more complex problems (three-dimensional, highly energetic)
may require user experimentation: trigger too high and the grid doubles too early
causing a lot of extra work; trigger too low and the solution may ring (limit cycle)
on a coarse grid and never engage a finer grid.

The template setting therefore updates the boundary condition after completion
of a forward and backward sweep through the domain. Other template values are not
discussed here. They are consistent with default values as described in Section 5.4
and are included for the users convenience.

Gas property data files must now be copied (or linked) from the share/physicssmodules
installation directory into the working directory prior to executing laura. The files
include species_thermo_data (thermodynamic curve fit data), species_transp_data
and species_transp_data_0 (collision cross section data for computing transport
properties), kinetic data (chemical kinetic source term data) and tdata (the gas
model specific to the current simulation). The tdata file is generally the only file
that requires editing by the user. For the case of 5 species air in thermochemical
nonequilibrium the file tdata is defined as follows.

Two Temperature

N 6.217e-20

0 7.758e-09

N2 0.737795

02 0.262205

NO 1.e-09

The fresh start run for this example case is now ready to be executed. It is
assumed that the executable file laura is available in the working directory. This
case is small enough to be run in interactive mode. For the purposes of discussion,
it is convenient to capture the output in a file called out-01.

% laura >& out -01	 (for csh)

% laura > out -01 2>&1	 (for sh)

The user should note several types of information in out_01. The beginning of
this file contains diagnostic information regarding presence of optional files, free
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stream conditions, and kinetic model diagnostics including warnings regarding ab-
sence of some allowed third body collision partners. Lines beginning with "step ="
keep track of the relaxation step number, elapsed wall time, sum of the L1 norms
over all conservation equations, and the L2 norm. Lines beginning with "block
_" keep track of the L1 norm for mixture continuity, x-momentum, y-momentum,
z-momentum, total energy, and vibrational-electronic energy residuals. The state-
ment Calling align shock... appears after every 100 steps (movegrd = 100). The
statement Saving restart and plot files. followed by intermediate values of
aerodynamic coefficients appear after every 200 steps (iterwrt 200). The grid
doubles automatically after step 472 from 16 to 32 cells in the k direction when the
error norm first drops below 0.005.

block =	 1 task =	 1 err: 0.17E+01 0.30E+00 0.61E-15 0.44E+00 0.38E+00 0.53E-01
step = 472 time =	 24.65 sum(abs(task error)) = 0.29E+01 L2 norm = 	 0.50E-02

Increased kmax to 32
block =	 1 task =	 1 err: 0.69E+05 0.54E+02 0.31E-14 0.51E+02 0.14E+04 0.40E+03
step = 476 time =	 25.09 sum(abs(task error)) = 0.70E+05 L2 norm = 	 0.97E+08

In general, there is a large jump in the error norm following a grid move or grid
doubling which rapidly diminishes to pre-adjustment levels. A second doubling from
32 to 64 cells occurs after step 1348.

block =	 1 task =	 1 err: 0.15E+01 0.47E+00 0.13E-14 0.34E+00 0.45E+00 0.47E-01
step = 1348 time = 	 113.30 sum(abs(task error)) = 0.28E+01 L2 norm = 	 0.49E-02

Increased kmax to 64
block =	 1 task =	 1 err: 0.47E+05 0.46E+02 0.39E-14 0.41E+02 0.82E+03 0.23E+03
step = 1352 time = 	 114.19 sum(abs(task error)) = 0.49E+05 L2 norm = 	 0.46E+08

The interim solution for pressure contours after the first 2,000 steps is shown
in Figure 5a on the next page. The corresponding surface pressure and heating
distributions are shown in Figure 5b. The deep blue zone in front of the sphere
represents undisturbed free stream conditions. The deep red indicated the high
pressure stagnation region. The captured shock is approximately located at 60% of
the distance between the spherical surface and the inflow boundary. The surface
pressures and shock shape will be shown to be nearly converged at this point but
the heating rates are still far from converged. Converging the boundary layer profile
is the focus of the remaining relaxation steps.

Line relaxation is engaged at this point by editing assign tasks, sweeping
around the sphere in the i direction and applying line relaxation across the boundary
layer in the k direction.

1	 1	 3	 1	 0	 1

The adapted grid and restart files are renamed to start the second run.

% cp laura_new.g laura.g

% cp laura_new.rst laura.rst

Changes or additions to the file laura-namelist_data are indicated below.
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Figure 5: Solutions to the sphere test problem: V... = 5,000 m/s, p...
0.001 kg/m3 , T,, = 200 K, 5-species air, thermochemical nonequilibrium, ra-
diative equilibrium wall, E = 0.89, and super-catalytic wall boundary.
Users_Manual.tex	 55	 Rev: 41601, August 10, 2009



irest	 = 1 ! 0 for fresh start, 1 for restart

jupdate = 20 ! steps between update of jacobian

ntran = 20 ! steps between update of transport properties

nitfo = 0 ! number of 1st-order relaxation steps

rf - inv = 2.0 ! inviscid relaxation parameter

rf -vis = 2.0 ! viscous relaxation parameter

movegrd = 400 ! number of steps between calls to align-shock

maxmoves = 3 ! maximum number of calls to align shock

frac -line - implicit = 0.7

At the conclusion of these next 2,000 steps (4,000) total the L2 norm has dropped
to 0.74e-06 and the solution is converged. The solution for pressure contours after
4,000 steps is shown in Figure 5c. The corresponding surface pressure and heating
distributions are shown in Figure 5d. Significant reduction in heating level and
smoothing of the stagnation region profile has occurred using the line relaxation
across the boundary layer during this second set of 2,000 relaxation steps.

Line relaxation across the entire shock layer (frac_line_implicit 1.0) can
be accommodated in this case if the relaxation factors (rf_inv and rf_vis) are
increased to 5. The tolerance for convergence of the L2 norm (rmstol) is set to Le-
12. Grid movement is switched off (movegrd = 0). The latest grid and restart files
are renamed as before to start the third run. The third run reaches the convergence
criteria, in 1,600 additional relaxation steps, a drop of 6 orders of magnitude in
the L2 norm. The solutions (Figure 5e and Figure 50 are nearly identical to the
corresponding figures at 4,000 steps.

block =	 1 task =	 1 err: 0.14E-04 0.50E-05 0.11E-14 0.36E-05 0.40E-05 0.53E-06
step = 1580 time =	 335.39 sum(abs(task error)) = 0.27E-04 L2 norm = 	 0.10E-11

block =	 1 task =	 1 err: 0.14E-04 0.48E-05 0.12E-14 0.35E-05 0.39E-05 0.51E-06

step = 1600 time =	 339.63 sum(abs(task error)) = 0.26E-04 L2 norm = 	 0.98E-12

Aerodynamic Coefficients

c x = -0.8854

c_y = -0.0000
c_z = 0.6950

C -1 = -0.0000
c_m = 0.3514

c n = 0.0000

8.2 Coupled radiation procedure
Starting with the converged non-radiating LAURA solution, the shuffle_laura
routine must be applied to the laura.rst file, and the option to convert from un-
coupled to coupled radiation must be chosen—see Section 5.4.9 on page 24 for more
info on radiation flags. The new .rst file created by shuffle-laura must then be
renamed to laura.rst. The radiation input file, hara.in , which is also created by
shuffle-laura must be revised according to Section 5.6 on page 33. Furthermore,
the following lines must be added to the laura-namelist-data file:

radiation = .true.

nrad = 5000
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frac rad new = 0.8

iinc rad = 3

jinc -rad = 3

The first of these, radiation, must be set to true. The parameter nrad specifies
the number of flowfield iterations between calls to HARA, fracsad-new specifies the
fraction of the most recent HARA calculation applied to the LAURA solution, and
iinc -rad and jinc_rad, respectively, specify the increment in the treated points
along the surface and in the spanwise direction. For axi symmetric cases, j inc_rad
must be 1. For relatively weakly coupled radiation, such as Earth lunar-return
conditions [17], nrad may be set to 1,500 for the first two calls to HARA, and 3,000-
5,000 for the subsequent calls. For strongly coupled flows, such as Mars-return entry
to Earth [18], nrad should be set to 500 for the first two calls to HARA, and 1,000
for the rest.

8.3 Unspecified ablation procedure - Coupled
The recommended procedure for an unspecified ablation computation, meaning the
ablation rate and wall temperature is computed as part of the flowfield solution
(instead of being specified by the user), is as follows:

1: Obtain a non-ablating solution assuming an equilibrium catalytic and radia-
tive equilibrium wall. Include only species required for a non-ablating solution.

2: Apply the shuffle_laura utility to the converged non-ablating solution. Choose
the ablation option and increase the number of species to the amount required
to accommodate ablation species. Add the ablation species to tdata.

3: Modify laura-namelist_data to include the following—see Section 5.4.1 on
page 13 for more info on ablation parameters:

surface -temperature -type -0 = 'surface energy balance'

blowing-model -0 = "equil-char-quasi-steady"

CHONSi -frac -pyrolysis -0 = 0.547, 0.093, 0.341, 0.019, 0.000

CHONSi -frac - char -0 = 0.488, 0.000, 0.273, 0.000, 0.239

ept = 0.01

nexch	 = 2

freq-wall = 50

bprime -flag = 1

compute-mdot - initial = 1

ablation-option = 0

rmstol = 1.0e-12

hrs = 100.0

ablation verbose = .true.

where CHONSi_frac_pyrolysis_0 and CHONSi_char pyrolysis_0 should be
changed to represent the material of interest. Setting bprime_flag = 1 spec-
ifies that an approximate film coefficient diffusion model is applied in the
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surface elemental mass balance. This model is robust enough to apply to a
converged non-ablating flowfield. For this option, freq_wall specifies how of-
ten the cells at the wall are updated (instead of nexch). A value of 50 seems to
work for both weakly and strongly ablating cases. In addition, ept represents
the fraction of the new ablation solution, which includes the ablation rate,
wall temperature, and wall species. The rmstol and hrs values are included
to prevent premature termination of the computation.

4: Run LAURA for roughly 24,000 iterations. During each ablation computa-
tion, data is printed out for each point on the body, indicated by 1. The
level of convergence is indicated with mdot residual at the end of ablation
computation:

mdot residual = ^(o^i2) 2	(47)
l

Usually, mdot residual = 1.E-2 or lower indicates that ablation computa-
tion is adequately converged within 1%.

5: If the user considers the b-prune approach of sufficient accuracy, then the
computation is finished. If the user wishes to apply a rigorous diffusion model
at the surface, consistent with that applied throughout the flowfield, then the
following modifications should be made to laura-namelist_data:

freq-wall = 500
bprime-flag = 0

Setting bprime_flag = 0 specifies the rigorous diffusion model at the sur-
face [1]. This model is significantly less robust than the b-prime approach,
which is why it requires the solution of the b-prime approach as an ini-
tial condition. With bprime_f lag = 0, the energy equation is solved sep-
arately from the elemental mass balance and char equilibrium constraints.
The number of flowfield iterations between solutions of the energy equa-
tion is governed by freq_wall, while the other equations are governed by
nexch. In general, freq_wall should be much greater than nexch. The
energy equation requires the convective heating, which must be allowed to
converge to a meaningful value after the wall properties are perturbed. Note
that with bprime_flag = 0, the ablation calls are significantly quicker than
for bprime_flag = 1, and nothing is printed to the screen.

6: Run LAURA until the ablation rate, wall temperature, and convective heating
reach steady values within one percent. After each solution of the energy
equation, an increase in the residual will be seen. Unlike the b-prime approach,
this value can be reduced within a reasonable number of iterations to ie-7,
or lower.

8.4 Unspecified ablation procedure - Uncoupled
The uncoupled ablation analysis (defined in detail in Ref. [1]) differs from the coupled
analysis in that the influence of ablation on convective heating is treated approxi-
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mately using the blowing correction. In this uncoupled analysis, ablation is never
introduced into the flowfield, and it consists of simply a post-processing step to the
non-ablating flowfield. The recommended procedure for an uncoupled ablation anal-
ysis involves the same first two steps listed in Section 8.3 on page 57 for a coupled
analysis. After those steps, modify laura-namelist_data to include the following:

surface -temperature -type-0 = 'surface energy balance'

blowing-model -0 = "equil_char_quasi_steady"

CHONSi_frac_pyrolysis_0 = 	 0.8822, 0.0283., 0.0866, 0.0029, 0.0

ept = 1.0

bprime_flag = 1

uncoupled-ablation-flag = 1

ncyc = 0 ! global steps

where CHONSi-frac_pyrolysis_0 and CHONSi_char_pyrolysis_0, should be changed
to represent the ablator material of interest. Note that ncyc = 0 is required. The
final step is to run LAURA. This will first call the ablation model. Then it will
print out an updated laura_surface.q file with the computed ablation rate, wall
temperature, and altered convective heating (from the blowing correction) values.
LAURA will then terminate without executing any flowfield iterations.
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Appendix A

Migrating Cases from Prior Versions

Follow the following steps to start LAURA simulations run with LAURA prior to
version 5.

Step 1. Create a new working directory and change to it

% mkdir [Working Directory]

Step 2. Copy following required files from the old directory:

% cp /old/root.rst old.rst

% cp /old/root.tsk assign tasks

% cp /old/STRTfiles/bound_data.strt laura_bound_data

and, depending on the case, these files:

% cp /old/root.qtw old.qtw
% cp /old/root.2eq old.2eq

Step 3. Use the LAURA convert -bound-data utility, or edit laura bound data so
that there are only integer numbers in this file and there is 6 integers
separated by at least one space per line per computational block. For
example, the original file may look something like:

C:CDATADATADATADATADATADATADATADATADATADATADATADATADATADATADATADATA

C:..... $Name.	 $

data ( itype(i, 1), i = 1,6 )
&	 /	 1, 1002111,	 2,	 1,	 0,	 3 /
data ( itype(i, 2), i=1,6 )

&	 / 1001211,	 1,	 2,	 1,	 0,	 3 /

C::CDATADATADATADATADATADATADATADATADATADATADATADATADATADATADATADATA

Edit the file to look like this:

1 1002111	 2	 1	 0	 3

1001211	 1	 2	 1	 0	 3

Step 4. Run the interactive convert -laura utility and answer all the questions.
This utility creates laura.rst and laura.g files. You will have an option
either to keep the prior-to-version-5 coordinate system orientation or to
rotate the grid to the version 5 coordinate system orientation. As of ver-
sion 5, LAURA uses +x-axis as the body normal direction while prior to
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Z

(a) Prior to Version 5.

X ^^Y

(b) Version 5.

Figure A6: LAURA coordinate system orientations.

version 5 LAURA used the +z-axis as the body-normal direction. The two
orientations are show in Figure A6.

To run LAURA with LAURA grid orientation prior to version 5, use the
following formula to get a new angle-of-attack, a:

anew = aold — 90	 (A48)

Step 5. Copy the example laura-namelist_data file to your working directory
from the [installs prefix] /share/laura directory, where install prefix
is the installation prefix specified when LAURA was installed.

% cp [install_prefix]/share/laura/laura_namelist_data

Use this file as a template to define the simulation parameters. Refer
to Section 5.4 on page 13 for complete list of options. You must change
irest = 0 to irest = 1, otherwise the solution will be initialized to free
stream conditions.

Step 6. Edit assign tasks so that there are only integer numbers in this file. For
example, the original file may look something like this:

CASE:

C:..... $Name.	 $

1 3	 0	 1	 0	 1
2 3	 0	 1	 0	 2

blk swp rlx strt stop task
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Edit the file to read like this:

1 3	 0	 1	 0	 1
2 3	 0	 1	 0	 2

Note: you can also use the LAURA utility make-as sign_tasks to generate
a new assign tasks.

Step 7. If necessary, create the file laura_vis_data (see Section 5.11 on page 36
for more detail.)

Step 8. Modify tdata file (see Section 5.5 on page 30) to define the gas model
condition for your specific simulation. The species order in this file must
match the species order used in the prior version of LAURA. The other
data files should not be changed.A20

Step 9. Run LAURA as usual—see Section 4 on page 6.

""These files may be changed if different thermodynamic model, curve-fit data, or thermo-
chemical reaction is needed—see Section 5.5 on page 30 for more detail.
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